
Secure by Design
A novel industry practice

CASTOR Software Days 2019
October 15, 2019

Daniel Deogun & Dan Bergh Johnsson

@DanielDeogun @danbjson #SecureByDesign

Disclaimer

This presentation is purely anecdotical.
But, we would welcome rigorous studies.

Warning
for lack of
evidence

@DanielDeogun @danbjson #SecureByDesign

Daniel Deogun
Coder and Quality Defender

About us

Stockholm
Uppsala

Malmö

Göteborg

Umeå

Omegapoint

Umeå

Uppsala
Stockholm

Malmö

Göteborg

Dan Bergh Johnsson
Secure Domain Philosopher

@DanielDeogun @danbjson #SecureByDesign

Take-aways

• Security is important but in practice often neglected
• A lot of security vulnerabilities are due to bugs
• Bugs can be prevented by software design
• Secure by Design collects designs that prevents bugs

that manifest as security vulnerabilities

@DanielDeogun @danbjson #SecureByDesign

Some security vulnerabilities

• SQL Injection is often a confidentiality problem

• Business integrity problems

• Patch management

Observation: It is hard to think about security all the time - especially
when you have work to do.

@DanielDeogun @danbjson #SecureByDesign

Secure by Design - as method

@DanielDeogun @danbjson #SecureByDesign

Examples of interesting designs
• Domain Primitives

• Consistent upon Creation

• Immutability of Objects

• Entity Snapshot

• Testing of extremes

• Taint analysis

• Faults as normal results

• Immutable builds

• Seamless deploy

• Stateless components

• Externalization of
configuration

• 3 R’s of Enterprise Security

@DanielDeogun @danbjson #SecureByDesign

Domain Primitives

“A value object so precise in its definition that it, by its mere
existence, manifests its validity is called a Domain Primitive.”

- Secure by Design

• Can only exist if its value is valid
• Building block that’s native to your domain
• Valid in the current context
• Immutable and resemble a value object in DDD

@DanielDeogun @danbjson #SecureByDesign

Quantity as a Domain Primitive

public final class Quantity {
 private final int value;

 public Quantity(final int value) {
 inclusiveBetween(1, 99, value);

 this.value = value;
 }

 //Domain specific quantity operations...
}

@DanielDeogun @danbjson #SecureByDesign

Untangle Inside
- Cluttered Entity

https://flic.kr/p/wdBcT
https://creativecommons.org/licenses/by/2.0/

class Order {
 private ArrayList<Object> items;
 private boolean paid;

 public void addItem(String isbn, int qty) {
 if(this.paid == false) {
 notNull(isbn);
 inclusiveBetween(10, 10, isbn.length());
 isTrue(isbn.matches("[0-9X]*"));
 isTrue(isbn.matches("[0-9]{9}[0-9X]"));

 Book book = bookCatalogue.findByISBN(isbn);

 if (inventory.availableBooks(isbn) >= qty) {
 items.add(new OrderLine(book, qty));
 }
 }
 }

 //Other logic...
}

@DanielDeogun @danbjson #SecureByDesign

De-Cluttered Entity

class Order {
 private ArrayList<Object> items;
 private boolean paid;

 public void addItem(ISBN isbn, Quantity qty) {
 notNull(isbn);
 notNull(qty);

 if(this.paid == false) {
 Book book = bookCatalogue.findByISBN(isbn);

 if (inventory.availableBooks(isbn).greaterOrEqualTo(qty)) {
 items.add(new OrderLine(book, qty));
 }
 }
 }
 //Other logic...
} https://flic.kr/p/wdBcT

https://creativecommons.org/licenses/by/2.0/

@DanielDeogun @danbjson #SecureByDesign

The R's of Enterprise Security

RepaveRotate Repair

Ref: Justin Smith, Pivotal @justinjsmith

@DanielDeogun @danbjson #SecureByDesign

Advanced Persistent Threat (APT)
• APT is a type of attack that often result in significant

data loss or damage.

• Performed over a long period of time & involves
advanced techniques

• Several vulnerabilities in combination are often used
to exploit the system

• Exploiting the fact that things seldom change
• servers
• credentials
• ip-addresses
• non-patched bugs tend to open up for attacks, e.g.

• Baltimore City Ransomware
• NotPetya attack on Ukraine
• Heartbleed in OpenSSL

Richard Patterson https://flic.kr/p/24GcRZQ

@DanielDeogun @danbjson #SecureByDesign

Designs Inspired from the Cloud

v 1.0

v 1.1

v 2.0

Expand / Contract APIs

…
?

. . .

Stateless ServicesService Discovery

@DanielDeogun @danbjson #SecureByDesign

The R's of Enterprise Security

RepaveRotate Repair

Ref: Justin Smith, Pivotal @justinjsmith

@DanielDeogun @danbjson #SecureByDesign

Take-aways

• Security is important but in practice often neglected
• A lot of security vulnerabilities are due to bugs
• Bugs can be prevented by software design
• Secure by Design collects designs that prevents bugs

that manifest as security vulnerabilities

@DanielDeogun @danbjson #SecureByDesign

Thanks
@DanielDeogun @danbjson #SecureByDesign

