Safety-security co-engineering: formal outlook

Elena Troubitsyna (Assoc. Prof at Theoretical Computer Science, KTH)

|

c

Lﬁ

-

:

| L

J

Introduction

» Until recently the main focus of designing SCADA
(supervisory control and data acquisition) systems has been
on safety

— Freedom of accidents due to system failure

» Fault tolerance: component faults do not result in a system
failure

» Verification of software: unsafe states are not reached

T

* Closed systems:
— “Not my job” attitude towards security

Introduction cnt.

* Increasing reliance on networking in modern SCADA systems

 Exploiting security vulnerabilities might result in loss of control
and situation awareness and lead to safety-related hazards

— Power outages, critical services unavailability, jeep hacking etc.

If not secure then not safe

How to achieve safety/security integration?

Motivation

* We need rigorous techniques that facilitate systematic analysis of
safety and security interdependencies and promote cyber-secure
by construction system design

» How to explicitly represent the impact of security failures and identify
their impact on safety?

e Can we use models and associated proofs to identifying the security
requirements derived from the system safety goals?

« Additional complexity: we need to consider both physical and cyber
threats

Generic control system

Air-conditioning in this room
Sensor = temperature sensor
Actuator = heater
Control loop
Read measurement of temperature sensor
If temperature > 24 degrees then heater : = OFF
If temperature < 22 degrees then heater := ON

Generic control system

« Safety goal: keep safety parameter p_real within the predefined
boundaries

« Safety invariant p_crit_low < p_real < p_crit_high

Generic control system

Alternative |
Sensor

Sensor

« Safety goal: keep safety parameter p_real within the predefined
boundaries

« Safety invariant p_crit_low < p_real <p_crit_high

Generic control system

_Alternative
Sensor

Sensor

Alernative T
Actuator

« Safety goal to keep safety parameter p_real within the
predefined boundaries

« Safety invariant p_crit_low < p_real <p_crit_high

Control systems: systems-theoretic
perspective

Communication

Communication
Channel

eedback

Process
model

akp

b&gﬁ%a

o] Safety cases

38 OCH KONST 2%

Soeess

Statement

Goal
The sum of the natural K .
numbers less or equal (Clalm)
N to nequals to Sn = n
Goal In context of A (n+1)/2

$ Strategy
e

Is solfed by /Mathmatical Induction/ (
Subgoal

T context of teqy P/\q L

Base Inductive Step Assuming
s solyed by Holds for n = 1 Holds for n =k+1 Holds for n = k
7
Goal T conexior M Context SO| Utl on
Sk+1= (k+1)k+2)/2 V|denCE)
Is spfved by Is solvad by Sk+1
Sk + (k+1)

= kk+1)/2 + (k+1)
= (k+1)(k+2)/2

akp

SNy,

] From safety case to cyber-security case

38 OCH KONST 2%

R

G1 Parameter p is within
safety boundaries

]

S1 Demonstration of
validity of three
groups of constrains

G2 G3 G4
Critical parameter Controller logic is Controller commands are
estimate is valid correct implemented correctly

Constraint behind G2:
The value p used by the controller at each cycle as an estimate is sufficiently close to the
real physical value p_real (Process model is sufficiently accurate)

Constraints behind G4:
* The actuator receives a command from the controller once per cycle (period)
* When the controller sets the actuator to the state decreasing then the value of p_real
decreases (or stops increasing) with the passage of time, i.e.,
act = decreasing = p_real, 2 p_real.,,, for any system cyclescandc + 1

o SO
{E VETENSKAP %’

38 OCH KONST 2%

R

Decomposition of G3

Constraints behind G3
Boundary p_high is calculated so that

p_high+A+max _increase_per cycle < p_crit_high;
— Effect of actuator state:
When p is greater than p_high
then the controller always

sets the actuator to the state
decreasing
— Similarly to increasing

G3

C1
Cortraller logiss Modelling in Event-B
ontroller logic is correct with Rodin platform
tool support

S§2 Define constrains over constants as
axioms, model controller actions as

events, define safety invariant and prove it

)

G3.1
Constrains over constants
representing thresholds and
safety boundaries defined as
axioms and constants

G3.2

Controller actions modelled
as events preserve safety

invariant

Sn3.1 Non-
contradictive-
ness of
axioms proved
as theorem

n3.2 Invarian
preservations
proof
obligation
discharged for
each event

Formal specification and verification

« Formal specification languages:
— mathematical description (specification) of high-level system requirements

» Specification has precise semantics
— Verification tools allow us to prove that certain property is preserved

» Various generic and domain specific standards recommend the use of
formal modelling in highly-critical systems

* Pros: find design errors before heavy investments in the
implementation are made

Formal modelling in high assurance engineering

Formal Methods In Pictures

Testing/Simulation Formal Analysis

."‘ \,

II |

5 v

A 4
Real System Formal Model
o Partial coverage e Complete coverage

(of the modeled system)

Accurate model: verification

Approximate model: debugging

From J.Rushby talk on “Disappearing formal methods”

| Rt Event-B

R

» A state-based formal approach

« State is defined by a collection | Machine M Context C
; Variables v Carrier Sets d
of variables nvariants | || Constants c
. Axioms A

» Types of variables and Events

properties are defined as '”'ET“Sat'On

invariants .

: . eviN

» A context includes user-defined

carrier sets, constants and their

))) Event is a guarded command
properties (defined as axioms)

stimulus - response
* Dynamic behaviour is

represented by events WHEN guard THEN assignment to variables END

« Model invariant defines a set of Each event should preserve the invariant
allowed (safe) states

Abstract specification of generic control system

Controller
estimates.p

Setting
actuator to

decrease p

Setting
actuator to
increase p

-~

Environment
evolution

Phases of

control.cycle

Actuator
state

Machiréﬁtroller

Variables phase, act, p, p_real

EVENTS

Controller
estimate

‘ Physical

Invariants phase € PHASE A act € ACT Ap €N Ap_real €N... A safety

Initialisation phase := est || act := none || p := p0|| p_real := p_real0 end

phase := env end

estimate = where phase =est then p : € estim(p_real) || phase := cont end
. act_decrease = where phase = cont 2 p = p_high then act := decreasing ||

" act_inc = where phase= cont /1 p < p_low then act := increasing ||

phase :=envend ...

-env =where phase = env then p_real : € N|| phase := est end

Correct-(and dependable)-by-construction
development in Event-B

e Abstract model: “birds view” — defines
only the most essential properties and
behavior

» Refinement model transformation: more Abstract model

detailed requirements and properties

are added

e Correctness of model transformation is
p{)O\{ed:tcor&espondence tg{etV\{eten more
abstract and more concrete state :
spaces implies that abstract invariant is Detailed model
preserved in the refined model

» Explicit representation of dependability
features; safety, fault tolerance,
adaptability

* Rodin platform: automated support for Implementation
model construction and verification:
(incremental development merging
modelling and verification)

Constructing specification and cyber-security
case

Incremental derivation of the networked architecture by refinement in parallel
with safety case

* We unfold the system architecture together with explicit specification of communication
links by model refinement.

« Data producer-consumer pattern: abstraction of the impact of the security failures

> spoofing producer
> data tamperlnP R
> DOS (channel'unavailability)

* We introduce a model of the sensor and sensor-actuator comm.link (producer: sensor,
consumer: controller)

e Derived constraints:

— sensor imprecision is acceptable (< A)
— controller does not use corrupted data as an estimate of p
— detection of a corrupted value triggers error recovery and activates an alternative mode of estimating p.

akp

S,

a1 Corresponding fragment of safety case

38 OCH KONST 2%

R

GS Critical parameter estimate is valid when
source of measurements S is used

v v L 4
GS.1 Source GS.2 Security monitoring GS.3 Upon detection of failure
precision is validated detects security failures recovery is triggered
S81 Explicit
representation of the
h 4 A 4 A - outcome of security
GS2.1 Source Sis GS2.2 Data GS2.3 High monitor at each cycle,
: integrity is availability is t f
authenticated preventian. o
guaranteed guaranteed propagations of

corrupted data

!

Sn2.2 Sn2.5
Sn2.1 Periodic Sn2.1 iy GS_3.1 System model
Use of source Use of cation _is changed upon
MAC authenti- MAC timeout failure, measurements

are used as estimates
only in fault free mode

cation onitoring

Sn3.1

Sn3.2
Prongstire % Proof state =
mode # OR 3 B

s source_out
Nominal =

Conclusions

» Systems theoretic approach provides us with a suitable basis
for an integrated analysis of safety-security requirements

* Modelling allows us to treat safety and security as the
interdependent constraints

— Enables identification of the critical paths including reconfiguration

» Derived constraints are heterogeneous: sw, hw, system
design

« Current work: quantitative security analysis — likelihood of
attack success for various attacker profiles and model-based
evaluation of protection alternatives

Thank you!

	Safety-security co-engineering: formal outlook
	Introduction
	Introduction cnt.
	Motivation
	Generic control system
	Generic control system
	Generic control system
	Generic control system
	Control systems: systems-theoretic perspective
	Safety cases
	From safety case to cyber-security case
	Decomposition of G3
	Formal specification and verification
	Formal modelling in high assurance engineering
	Event-B
	Abstract specification of generic control system
	Correct-(and dependable)-by-construction development in Event-B
	Constructing specification and cyber-security case
	Corresponding fragment of safety case
	Conclusions
	Thank you!

