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Machine Learning with Deep Neural Networks (DNN)

Revolutionised solutions in vision, speech recognition, …
DNN models are trained by giving examples (instead of programming)
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When DNN output 
is wrong, tweak its 
parameters



Training DNNs

• Obtain DNN model that minimises classification error

• Use Stochastic Gradient Descent (SGD) for training: 

• 1. Begin with random model
• 2. Consider mini-batch of 

training data
• 3. Iteratively calculate gradients
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Training DNNs on GPUs

• GPUs are good at parallelising gradient computation
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Training DNNs in Parallel with GPUs

• With large datasets, speed up by calculating gradients on multiple GPUs 
• Every GPU has model replica with a copy of model parameters (or weights)
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Model Synchronisation among GPUs

• Parameter server: Maintains global model
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• GPUs:
1. Send gradients to 

update global model
2. Synchronise local 

model replicas with 
global model
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The Problem with Large Batch Sizes

Training with large mini-batches is bad for your health. 

More importantly, it’s bad for your test error. 

Friends don’t let friends use mini-batches larger than 32.

Yann LeCun 
@ylecun

2:00 PM – 26 Apr 2018
447 1.2K
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Why Use Large Batch Sizes?

dataset

gradient gradient gradient

weights

average

An even bigger batchA bigger batchA batch

Keep work per GPU constant to scale

E.g. ~32 to 256 labelled images
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What is the Best Batch Size on a GPU?

• ResNet-32 on NVIDIA Titan X GPU

Peter Pietzuch - Imperial College London

1134

361
302 354 379

445

0
200
400
600
800

1000
1200

32 64 128 256 512 1024Ti
m

e 
to

 a
cc

ur
ac

y 
(s

ec
)

Batch size b

TensorFlow

9



Training DNNs Favours Small Batch Sizes

We want frequent, less “noisy” updates
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Statistical Efficiency Needs Small Batch Sizes
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Hardware Efficiency Needs Large Batch Sizes 

Keep work per GPU constant → increase batch size with #GPUs
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Tension between Hardware & Statistical Efficiency

• Practitioners increase batch size due to hardware efficiency

• But best batch size depends on both hardware & statistical efficiency
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Training with large mini-batches is bad for your health. 

More importantly, it’s bad for your test error. 

Friends don’t let friends use mini-batches larger than 32.
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Current Practice: Hyper-Parameter Tuning

• Adjust hyper-parameters (eg learning rate, momentum etc) to avoid 
reduction in statistical efficiency

• Linear scaling rule:
"When mini-batch size is multiplied by k, multiply learning rate by k”

• Goyal et al. (2017)

• Drawbacks
– Manual, labour-intensive process
– Highly model specific – not portable and does not work for some models
– Less effective for very large batch sizes…
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Limits of Hyper-Parameter Tuning

“When mini-batch size is multiplied by k, multiply learning rate by k”
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Fundamental Challenge of GPU Scaling

• “If batch size could be made arbitrarily large while still training 
effectively, then training is amenable to standard weak scaling 
approaches. However, if the training rate of some models is 
restricted to small batch sizes, then we will need to find other 
algorithmic and architectural approaches to their acceleration.”

– J. Dean, D. Patterson et al., “A New Golden Age in Computer Architecture”, 
IEEE Micro, 2018

• How to design a deep learning system that scales training with 
multiple GPUs, even when the preferred batch size is small?
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(1) How to increase
hardware efficiency 
with small batches?

(2) How to synchronise
model replicas?

(3) How to reduce
scheduling &
synchronisation
overheads?
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Problem: Small Batch Sizes Underutilise GPUs
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How to Process Small Batches Efficiently?

One batch per GPU →
Not enough data and instruction parallelism for every operator
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Idea: Train Multiple Model Replicas per GPU

One learning process (or learner) per GPU stream
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Effect of Training Multiple Model Replicas per GPU

• But now we must synchronise a large number of learners/model replicas...
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(1) How to increase
efficiency with small 
batches?

(2) How to synchronise
model replicas?
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• Train multiple 
model replicas 
per GPU



Problem: Why not Synchronous Parallel SGD?

All learners always start from the same point
Limited exploration of parameter space
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Idea: Maintain Independent Model Replicas

• Benefits: 
– Increased exploration of space through parallelism
– Each model replica uses small batch size
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Crossbow: Synchronous Model Averaging

Allow learners to diverge but correct trajectories based on average model
Accelerate average model trajectory with momentum to find minima faster
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GPUs with Synchronous Model Averaging
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GPUs with Synchronous Model Averaging
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GPUs with Synchronous Model Averaging

Learner

Replica …

Reference 
Model

Learner

Learner

Replica

GPU 2

Learner

Replica …

Average 
Model

Learner

Learner

Replica

Learner

Replica …

Reference 
Model

Learner

Learner

Replica

GPU 3GPU 1

Synchronous 
Model Averaging

• Ensures consistent view of average model
• Takes GPU bandwidth into account during synchronisation
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• Train multiple 
model replicas 
per GPU

• Use synchronous 
model averaging

(1) How to increase
efficiency with small 
batches?

(2) How to synchronise
model replicas?

(3) How to reduce
scheduling and
synchronisation
overheads?
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Crossbow Architecture

Auto-tuner
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24K LOC

C/C++
15K LOC

Dataset

Data
pre-processData

pre-processData
pre-processors

Input batches

Model replicas

Learner streams

Ready queues

Task scheduler
Dataflows

G
PU

 1
G

PU
 2

Learner

Synch

Integration with TensorFlow

github.com/lsds/crossbow

Learner

Synch

Peter Pietzuch - Imperial College London 30



Efficient Task Scheduling

• Execute compute and 
synchronisation tasks

• Fine-grained 
concurrency

• Need efficient scheduler 
to feed all GPUs with 
tasks
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Interleaving Compute & Synchronisation Tasks
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Auto-Tuning the Number of Model Replicas

• Monitor training 
throughput

• Dynamically adust
number of learners

• Uses object pooling & 
lazy materialization
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Experimental Evaluation
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Does Crossbow Train Effectively with Small Batch Sizes?

Multiple learners per GPU improve hardware efficiency

TensorFlow Crossbow
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• ResNet-32 with 
ImageNet dataset on 
1 Titan X GPU
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Synchronous Model Averaging improves statistical efficiency

• ResNet-50 with 
ImageNet dataset on 
8 Titan X GPUs



Does Crossbow Train Effectively Across Models?

Training with multiple learners always better than training with large batches
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• ResNet-50 
with ImageNet
dataset on 
Titan X GPUs

What is the Statistical Efficiency with Many Learners?
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Crossbow: Scaling GPU Deep Learning

• Need to make training throughput independent from hyper-parameters
– Rethink the design of future deep learning systems

• Crossbow: Scaling DNN training with small batch sizes on many GPUs
– Multiple model replicas per GPU for high hardware efficiency
– Synchronous model averaging for high statistical efficiency

• Exciting research challenges for next generation deep learning systems

Peter Pietzuch - Imperial College London 39

Peter Pietzuch
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Thank You — Any Questions?

github.com/lsds/crossbow


