
Philipp Haller

Fine-grained Deterministic
Parallelization of Static Analyses

Philipp Haller

KTH Royal Institute of Technology
Stockholm, Sweden

CASTOR Software Days  
Stockholm, October 14th, 2019

Joint work with 
Dominik Helm, Guido Salvaneschi, Mira Mezini (TU Darmstadt, Germany), and  

Michael Eichberg (German Federal Criminal Police Office)

Philipp Haller

Background

• Associate professor at KTH (2014–2018 assistant professor)
• 2005–2014 Scala language team

– 2012–2014 Typesafe, Inc. (now Lightbend, Inc.)
• Co-author Scala language specification
• Focus on asynchronous, concurrent and distributed programming

– Creator of Scala actors, co-author of Scala’s futures and async/await
– Topics: programming models, compilers, type systems, semantics

 2

Philipp Haller

The Problem

• Increasing importance of static analysis
– Bug finding, security analysis, taint tracking, etc.

• Precise and powerful analyses have long running times
– Infeasible to integrate into nightly builds, CI, IDE, …
– Parallelization difficult: advanced static analyses not data-parallel

• Scaling static analyses to ever-growing software systems requires
maximizing utilization of multi-core CPUs

 3

Philipp Haller

The Approach

• Novel concurrent programming model
– Generalization of futures/promises
– Guarantees deterministic outcomes (if used correctly)

• Implemented in Scala
– Statically-typed, integrates functional and object-oriented programming
– Supported backends: JVM, JavaScript (+ experimental native backend)

• Integrated with OPAL, a state-of-the-art JVM bytecode analysis framework

 4

Ongoing work on
checking correctness

Philipp Haller

Example
• Two key concepts: cells and handlers
• Cell completers permit writing, cells only reading (concurrently)

 5

val completer1 = CellCompleter[...]
val completer2 = CellCompleter[...]
val cell1 = completer1.cell
val cell2 = completer2.cell

cell2.when(cell1) { update =>
 if (update.value == Impure) FinalOutcome(Impure)
 else NoOutcome
}
completer1.putFinal(Impure)

Philipp Haller

Example
• Two key concepts: cells and handlers
• Cell completers permit writing, cells only reading (concurrently)

 6

val completer1 = CellCompleter[...]
val completer2 = CellCompleter[...]
val cell1 = completer1.cell
val cell2 = completer2.cell

cell2.when(cell1) { update =>
 if (update.value == Impure) FinalOutcome(Impure)
 else NoOutcome
}
completer1.putFinal(Impure)

Philipp Haller

Scheduling Strategies

• Priorities for message propagations depending on number of
dependencies of source/target nodes and dependees/dependers

 7

Philipp Haller

Experimental Evaluation

• Implementation of IFDS1 analysis framework
• Use IFDS framework to implement taint analysis

– search for methods in JDK with return type Object or Class with String
parameter that is later used in an invocation of Class.forName

 8
1 Interprocedural Finite Distributive Subset

Philipp Haller

Scalability

Analysis executed on Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz (10 cores)
with 128 GB RAM running Ubuntu 18.04.1 and OpenJDK 1.8_212

 9

0

50

100

150

200

250

300

350 DefaultScheduling
SourcesWithManyTargetsLast
TargetsWithManyTargetsLast
TargetsWithManySourcesLast
SourcesWithManySourcesLast
OPAL - Sequential
Heros vs Threads

Ru
nt

im
e (

s)

Threads
5 10 15 20

40

50

60

70

80
10

Speed-up
4.94x with 10

threads

Philipp Haller

Scheduling Strategies

• Using suitable scheduling strategy has big impact on execution time
• Best strategy 49.94% faster than worst strategy, 31.86% faster than default

 10

Philipp Haller

Conclusion

• Deterministic concurrent programming model
– Supporting pluggable, domain-specific scheduling strategies

• Implemented as a library for Scala
• Experimental results for state-of-the-art IFDS-based taint analysis:

– Speed-up of 4.94x using 10 threads
– Significant gains using analysis-specific scheduling strategies

• Open-source code available on GitHub:  
https://github.com/phaller/reactive-async

 11

https://github.com/phaller/reactive-async

