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Background

• Associate professor at KTH (2014–2018 assistant professor) 
• 2005–2014 Scala language team 

– 2012–2014 Typesafe, Inc. (now Lightbend, Inc.) 
• Co-author Scala language specification 
• Focus on asynchronous, concurrent and distributed programming  

– Creator of Scala actors, co-author of Scala’s futures and async/await 
– Topics: programming models, compilers, type systems, semantics

 2



Philipp Haller

The Problem

• Increasing importance of static analysis 
– Bug finding, security analysis, taint tracking, etc. 

• Precise and powerful analyses have long running times 
– Infeasible to integrate into nightly builds, CI, IDE, … 
– Parallelization difficult: advanced static analyses not data-parallel 

• Scaling static analyses to ever-growing software systems requires 
maximizing utilization of multi-core CPUs
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The Approach

• Novel concurrent programming model 
– Generalization of futures/promises 
– Guarantees deterministic outcomes (if used correctly) 

• Implemented in Scala 
– Statically-typed, integrates functional and object-oriented programming 
– Supported backends: JVM, JavaScript (+ experimental native backend) 

• Integrated with OPAL, a state-of-the-art JVM bytecode analysis framework
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Ongoing work on 
checking correctness
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Example
• Two key concepts: cells and handlers  
• Cell completers permit writing, cells only reading (concurrently)
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val completer1 = CellCompleter[...] 
val completer2 = CellCompleter[...] 
val cell1 = completer1.cell 
val cell2 = completer2.cell 

cell2.when(cell1) { update => 
  if (update.value == Impure) FinalOutcome(Impure) 
  else NoOutcome 
} 
completer1.putFinal(Impure)
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Scheduling Strategies

• Priorities for message propagations depending on number of 
dependencies of source/target nodes and dependees/dependers
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Experimental Evaluation

• Implementation of IFDS1 analysis framework 
• Use IFDS framework to implement taint analysis 

– search for methods in JDK with return type Object or Class with String 
parameter that is later used in an invocation of Class.forName
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Scalability

Analysis executed on Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz (10 cores) 
with 128 GB RAM running Ubuntu 18.04.1 and OpenJDK 1.8_212
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Scheduling Strategies

• Using suitable scheduling strategy has big impact on execution time 
• Best strategy 49.94% faster than worst strategy, 31.86% faster than default

 10



Philipp Haller

Conclusion

• Deterministic concurrent programming model 
– Supporting pluggable, domain-specific scheduling strategies 

• Implemented as a library for Scala 
• Experimental results for state-of-the-art IFDS-based taint analysis: 

– Speed-up of 4.94x using 10 threads 
– Significant gains using analysis-specific scheduling strategies 

• Open-source code available on GitHub:  
https://github.com/phaller/reactive-async
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https://github.com/phaller/reactive-async

