
Formal
Verification of
Binary Code
Roberto Guanciale

// a0=GETBYTE(s0, 3);
ldr r3, [r7, #84]
lsrs r3, r3, #24
uxtb r3, r3
str r3, [r7, #48]
...
// v0=*(Te[0] + a0);
ldr r3, [r7, #48]
lsls r2, r3, #2
ldr r3, [pc, #928] ; AesEncrypt+0x428
adds r3, r2, r3
ldr r3, [r3, #0]
str r3, [r7, #32]
...
// t0 = v0 ^ v1 ^ v2 ^ v3 ^ rk[0]

// a0=GETBYTE(s0, 3);
ldr r3, [r7, #84]
lsrs r3, r3, #24
uxtb r3, r3
str r3, [r7, #48]
...
// v0=*(Te[0] + a0);
ldr r3, [r7, #48]
lsls r2, r3, #2
ldr r3, [pc, #928] ; AesEncrypt+0x428
adds r3, r2, r3
ldr r3, [r3, #0]
str r3, [r7, #32]
...
// t0 = v0 ^ v1 ^ v2 ^ v3 ^ rk[0]

Binary Analysis Frameworks

● Valgrind
● BAP
● Angr

Binary Analysis Frameworks

● Valgrind
● BAP
● Angr

Peripheral
Model

MMU Model

System
Security

Binary Analysis Frameworks

● Valgrind
● BAP
● Angr

Binary Analysis Frameworks

● Valgrind
● BAP
● Angr

● Implemented using Interactive Theorem Prover (HOL4)
○ => Machine checkable proofs

● Formal semantics if ISAs (ARM/Risc-V/etc)
● Formal semantics of BinaryIntermediateRepresentation

○ Similar to LLVM IR
○ Language designed to automate analysis

■ Program not in memory / Assertions

● Verified theories and proof producing analyses
○ Transpilation
○ Contract based verification
○ ...

Certifying (Proof-producing) Analysis of Binaries

Certifying Transpilation

0: pop R1
4: push R1

[0 {R1 := MEM[SP];
SP := SP-4;
PC := PC+4;
JMP 4}]

[4 {MEM := MEM with [SP<-R1];
SP := SP+4;
PC := PC+4;
JMP 8}]

Certifying Transpilation

0: pop R1
4: push R1

[0 {R1 := MEM[SP];
SP := SP-4;
PC := PC+4;
JMP 4}]

[4 {ASSERT(SP not in CODE SECTION);
MEM := MEM with [SP<-R1];
SP := SP+4;
PC := PC+4;
JMP 8}]

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?
○ {P} program: A1 -> A2 {Q}

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?
○ {P} program: A1 -> A2 {Q}

● Semi-automatic verification
○ Weakest precondition: WP
○ SMT solver P ⇒ WP

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?
○ {P} program: A1 -> A2 {Q}

● Semi-automatic verification
○ Weakest precondition: WP
○ SMT solver P ⇒ WP

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?
○ {P} program: A1 -> A2 {Q}

● Semi-automatic verification
○ Weakest precondition: WP
○ SMT solver P ⇒ WP

Contract Based Verification:

● For structured program
○ {P} statements {Q}

● For unstructured program?
○ {P} program: A1 -> A2 {Q}

● Semi-automatic verification
○ Weakest precondition: WP
○ SMT solver P ⇒ WP

Compositional Logic For Binary Code

Compositional Logic For Binary Code

Compositional Logic For Binary Code

Putting things together

Putting things together

Putting things together

Putting things together

Putting things together

Real world usage

● Transpilation:
○ ~ 5 instructions / s
○ numlib / wolf-ssl / lua / SQLite / libc
○ ARMv8 / Cortex M0 / Ongoing Risc-V

● Weakest precondition
○ ~ 1 instruction / s
○ fragments consisting of 10/100 instructions (i.e. AES loop body)

Thank You
https://github.com/kth-step/HolBA

● Side channel analysis
● Symbolic execution

○ WCET
○ Translation validation

● Kernel verification

