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// a0=GETBYTE(s0, 3);
ldr     r3, [r7, #84]
lsrs    r3, r3, #24
uxtb    r3, r3
str     r3, [r7, #48]
...
// v0=*(Te[0] + a0);
ldr     r3, [r7, #48]
lsls    r2, r3, #2
ldr     r3, [pc, #928] ; AesEncrypt+0x428
adds    r3, r2, r3
ldr     r3, [r3, #0]
str     r3, [r7, #32]
...
// t0 = v0  ^ v1 ^ v2 ^ v3 ^ rk[0]
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● Implemented using Interactive Theorem Prover (HOL4)
○ => Machine checkable proofs

● Formal semantics if ISAs (ARM/Risc-V/etc)
● Formal semantics of BinaryIntermediateRepresentation

○ Similar to LLVM IR
○ Language designed to automate analysis

■ Program not in memory / Assertions

● Verified theories and proof producing analyses
○ Transpilation
○ Contract based verification
○ ...

Certifying (Proof-producing) Analysis of Binaries



Certifying Transpilation

0: pop R1
4: push R1

[0 {R1 := MEM[SP];
SP := SP-4;
PC := PC+4;
JMP 4}]

[4 {MEM := MEM with [SP<-R1];
SP := SP+4;
PC := PC+4;
JMP 8}]



Certifying Transpilation

0: pop R1
4: push R1

[0 {R1 := MEM[SP];
SP := SP-4;
PC := PC+4;
JMP 4}]

[4 {ASSERT(SP not in CODE SECTION);
MEM := MEM with [SP<-R1];
SP := SP+4;
PC := PC+4;
JMP 8}]
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Real world usage

● Transpilation:
○ ~ 5 instructions / s
○ numlib / wolf-ssl / lua / SQLite / libc
○ ARMv8 / Cortex M0 / Ongoing Risc-V

● Weakest precondition
○ ~ 1 instruction / s
○ fragments consisting of 10/100 instructions (i.e. AES loop body) 



Thank You
https://github.com/kth-step/HolBA

● Side channel analysis
● Symbolic execution

○ WCET
○ Translation validation

● Kernel verification


