

Al & Automation at King

Sahar Asadi

We make great games

- We have developed more than 200 fun titles and our games can be played and enjoyed all over the world
- King had 258 million monthly active users for the quarter (Q2 2019)
- The company has been part of Activision
 Blizzard since February 2016

King has offices or studios in Stockholm, London, Barcelona, Malmo, Berlin, San Francisco, Chicago, New York, Los Angeles and Malta.

Some stats and facts

Global leader in cross-platform casual games

Four global franchises:

Candy Crush

Pet Rescue

Farm Heroes

Bubble Witch

Founded in 2003, studios in Stockholm, London, Barcelona, Malmo and Berlin.

Employees (approx.)

-2000

Al R&D Team @ King

Analytics
Strategy &
Platform

ML Platform Exploratory Research Product Use-cases

ng.com Ltd 2019 - Commercially Confidential

Research Areas

Personalization

Development Automation

Content Generation

Research Areas

Content Generation

What is content?

Strategy

Non-deterministic

Balanced

Aesthetics

Unique

Large state space

Content production pipeline

Creation Balancing Release

Create a new level

Maximum creativity

Modify and tweak

Make enjoyable for everyone

Staged release

Accessible to players

Content production pipeline

Balancing Create a new level Modify and tweak Staged release Make enjoyable for everyone Accessible to players Maximum creativity

Tweak

Get

feedback

Content production pipeline

Business benefits

Faster production pipeline

- Playtest in a few minutes
- Less context switching

Harder to break the game

- Internal testing
- Regression testing

Better content quality

- Balance before release
- More iterations

Stronger knowledge

- Objective metrics
- More measures available

Player simulation

Simulating gameplay

Which approach?

Deep Learning for image classification

Dog 6%

Cat 91%

Moose 2%

Whale 1%

Deep Learning on Candy Crush

State
Observed by human

Action

Made by human

Supervised learning
Cloud Machine Learning

g.com Ltd 2019 - Commercially Con

State encoding

100+ binary feature layers

Action encoding

Deep network architecture

Deep learning on Candy Crush

New state

5%

94% Most human-like move

King.com Ltd 2019 - Commercic

Training pipeline

Track
State-action pairs

Ingest

Train

Trained model HTTP server Dockerized

Correlation with real players

ML Agent

Play all levels

ML Agent success rate

Historical data

Player success rate

agent success rate (transformed)

We have a model... Are we done?

Simple setup

ing.com Ltd 2019 - Commercially Co

King

ing.com Eta zola - C

© King.com Ltd 2019 - Commercially Confider

King

What if there is no player data available?

Reinforcement learning

Reinforcement learning

Reinforcement learning

Deep Q-Network (DQN) + extensions

Challenges

- Reward selection
- Generalization
- Computational complexity
- Application

Setting rewards right can be tricky

Choice of reward should reflect game's goal

Avoid local optima

© King.com Ltd 2019 - Commercially Confidential

Computational Complexity

Alphago has become progressively more efficient thanks to hardware gains and more recently algorithmic advances.

Choice of policy method and application

HalfCheetah

Hopper

Swimmer

Implementation and reproducibility

What's next?

Validation

- Improvements in the reinforcement learning based bot
- Al friendly game interfaces

Generation

- Explore content generation methods
- Complete the content generation and validation loop.
- Assistive tool for content generation

Want to go deeper?

https://medium.com/@TechKing

- S. F. Gudmundsson, et al., "Human-Like Playtesting with Deep Learning",
- A. Karnsund (2019). Deep Q-Learning Tackling the Game of Candy Crush Friends A Reinforcement Learning Approach.
- M. Fischer (2019). Using Reinforcement Learning for Games with Nondeterministic State Transitions.
- D. Anghileri (2018). Using Player Modeling to Improve Automatic Playtesting.
- R. Ahn (2018). Cluster Analysis from a Game Theoretical Framework.
- M. Adamsson (2018). Curriculum Learning for Increasing the Performance of a Reinforcement Learning Agent in a Static First-Person Shooter Game.
- P. Eisen (2017). Simulating Human Game Play for Level Difficulty Estimation with Convolutional Neural Networks.
- S. Purmonen (2017). Predicting Game Level Difficulty Using Deep Neural Networks.
- E. R. Poromaa (2017). Crushing Candy Crush: Predicting Human Success Rate in a Mobile Game using Monte-Carlo Tree Search.
- A. Nodet (2016). Automated Heuristics in Candy Crush Saga using NeuroEvolution of Augmenting Topologies.

ing.com Ltd 2019 - Commercially Confidential

How to get in touch?

Questions and Collaborations

ai-rnd@king.com

