The late life of software

How to ensure projects happily reach retirement

Simone Stefani
Software Engineer @ Slagkryssaren AB



S. Stefani - CASTOR Sw. Days

Brief history of commercial software

Software used to be expensive, written by experts
and used by experts.

Through better tooling we decreased cost of
building software products.

Software got cheap, written by everybody and used
by everybody.

Many new businesses can access and use software
products.

Stockholm - 2019



What about maintenance?
And code quality?
And security?

We ended up ignoring a large part of the software lifecycle.



S. Stefani - CASTOR Sw. Days

The long-term problem

Software development is a never-ending task. However
small businesses often cannot commit to expensive
maintenance practices.

Missing and vulnerable dependencies, broken release
scripts. Development environment hard to recreate.

Software ages quickly, becomes legacy in a matter of a
few years.

Stockholm - 2019



1.
Project as versioned code

Everything needed to develop and run a /

project is codified and handled under
version control.

Care for a well curated Git tree which clearly
expresses the history of the project.

S. Stefani - CASTOR Sw. Days Stockholm - 2019



S. Stefani - CASTOR Sw. Days

2.
The 1 hour setup rule

A new developer should be able to start
working on a project not more than 1 hour
after beginning the assignment.

All our projects contain Docker
configurations which allow us to quickly
reproduce a development environment.

Stockholm - 2019



3.

Automate it! <>

Automation, especially through CD/Cl pipelines,
allows to scale responsibilities.

Linting, testing, building and deploying are all
handled by CD/Cl tools. No employee should
become the single point of failure of a project.

S. Stefani - CASTOR Sw. Days Stockholm - 2019



/

M)

<)

<M

<
M

Keeping up with
dependencies

Automation tools constantly inspect project
dependencies and report security
vulnerabilities.

We ease the task of keeping dependencies
up-to-date with automatic “bump” pull
requests.



A final note

No matter how great the devOps toolbox, simplicity and
pragmatism are key qualities of long living software
which continues to be pleasant to work with.

S. Stefani - CASTOR Sw. Days Stockholm - 2019



